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Cylinder gratings in conical incidence with applications to woodpile structures
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We use our previous formulation for cylinder gratings in conical incidence to discuss the photonic band gap
properties of woodpile structures. We study scattering matrices and Bloch modes of the woodpile, and use
these to investigate the dependence of the optical properties on the number of layers. We give data on
reflectance, transmittance and absorptance of metallic woodpiles as a function of wavelength and number of
layers, using both the measured optical constants of tungsten and using a perfect conductivity idealization to
characterize the metal. For semi-infinite metallic woodpiles, we show that polarization of the incident field is
important, highlighting the role played by surface effects as opposed to lattice effects.
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I. INTRODUCTION

In our previous paper@1#, we developed a formulation fo
stacked parallel gratings in conical incidence, using a mu
pole method. In this paper, we apply the theory to the an
sis of the woodpile photonic crystal. This is a structure co
sisting of layers of cylindrical rods with a stacking sequen
that repeats itself every four layers. Within each layer,
rods are parallel and separated by a distanceD. The distance
between successive layer centers ish and the rod axes in
adjacent layers are orthogonal. To obtain a periodicity of f
layers in the stacking direction, rods separated by one in
mediate layer are offset by a distance ofD/2 in the direction
perpendicular to the rod axes~Fig. 1!. A list of references
relating to the origin of the woodpile geometry may be fou
in the web bibliography of Dowling, Everitt, and Yablono
vitch @2#. Early theoretical studies of the woodpile we
made by Hoet al. @3#, using layers of dielectric rods of cir
cular, elliptical, or rectangular shape, by O¨ zbayet al. @4# and
by Sözüer and Dowling@5#.

The woodpile has attracted much attention since it i
three-dimensional structure, yet it can be fabricated us
two-dimensional lithography in a multistep process. At Sa
dia Laboratories, Lin and Fleming@6,7# have fabricated a
structure exhibiting a band gap at the important telecomm
nications wavelength band near 1.5mm. Similar crystals
have been constructed by Nodaet al. @8#.

Recently, metallic woodpile structures have been inve
gated by Linet al. @9# and El-Kadyet al. @10#. Metallic pho-
tonic crystals with a microstructure based on spheres, w
the Drude model used for the metal, are also discussed
Modinoset al. @11#. Metallic crystals offer advantages in siz
and weight, they are easier to fabricate and the costs
lower. There are potentially high temperature applications
thermophotovoltaics and blackbody emission. The cry
manufactured by Linet al. @9# has a large band gap in th
infrared region (8mm to .20 mm), together with an ab-
sorption peak near the band edge. A potential application
this effect is an efficient incandescent lamp in which ene
radiation could be suppressed in the infrared and shifted
the visible region.
1063-651X/2003/67~5!/056620~10!/$20.00 67 0566
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The woodpile structure we study here is an assemblag
circular cylinders, which may be composed of either diele
tric or metal. The ability to treat metallic gratings, includin
perfectly conducting gratings, is a strong feature of o
method. For simplicity, we will consider the case where t
unit cell of the grating contains only one cylinder, althou
the generalization to multiple cylinders per unit cell
straightforward and valuable@12#. A solution of the problem
in terms of a single scalar potential~cf. Ref. @13#! is not
possible due to the crossed structure of successive gra
and the polarization coupling that occurs through the bou
ary conditions. The prescription of the scattering matrix
quires the solution of a family of conical incidence diffra
tion problems for each layer associated with the dispers
directions introduced by the previous layer.

We note that Li@14# has treated conical diffraction b
gratings composed of rectangular rods, generalizing our
lier work on a modal formulation for dielectric and metall
lamellar gratings@15#, while Centeno and Felbacq@16,17#
consider the behavior of band gaps in photonic crystals
functions of polarization and conicity of the incident plan
wave. Li’s formulation has been exploited in a recent wo
on woodpiles composed of dielectric lamellar gratings in
thesis by Gralak@18#. Woodpile crystals and, in particula
dispersion relations and band gaps in dielectric woodpi

FIG. 1. The woodpile structure.
©2003 The American Physical Society20-1
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were further discussed by Gralaket al. @19#.
In Sec. II, we establish notation and summarize our f

mulation for gratings in conical incidence. In Sec. III, w
develop the formulation for the specific case of the woodp
structure. In Sec. IV, we discuss Bloch modes of the wo
pile and derive an algorithm that quantifies the depende
of the transmittance, reflectance, and absorptance on
number of layers. This is an important information for tho
involved in the fabrication of such structures. Finally in Se
V, we study the reflectance, transmittance, and absorpta
for tungsten woodpiles and relate these to the theore
considerations in Sec. IV, while showing the importance
surface effects not evident in the Bloch analysis.

II. CONICAL DIFFRACTION THEORY

In this section, we establish notation and give a se
contained summary of the essential features of our form
tion for cylinder gratings in conical incidence, using a Ra
leigh multipole method@12,20#. Full details are given in Ref
@1#. A major advantage of the multipole method lies in
ability to treat metallic and dielectric gratings with equ
ease. Our calculations for metallic woodpiles use measu
values of optical constants, such as those found in Ref.@21#.
For comparison purposes, we shall also use an idealized~per-
fect conductivity! model.

We consider a single grating consisting of identical par
lel cylindrical rods of radiusa whose axes are separated by
distanceD. In the chosen Cartesian coordinate system,
cylinders are parallel to thex-y plane with their axes paralle
to the x axis, as in the middle layer of Fig. 1. The prima
incidence channel is defined by the wave vector

k i5~a0 ,b0 ,2g0!, ~1!

with wavenumberk5v/c5(a0
21b0

21g0
2)1/2, where v is

the angular frequency andc is the speed of light in vacuum
The periodicity of the layer of cylinders introduces di

persion in they direction characterized byeibqy, with bq
5b012pq/D. For in-plane incidence in either of the tw
principal polarizations, the problem isx invariant for a single
layer. However, in conical diffraction, thex dependence is
eia0x while the addition of an orthogonal layer, as in a woo
pile, introduces dispersion in thex direction, leading to anx
dependence ofeiapx, with ap5a012pp/D. The formula-
tion of the single layer scattering matrices for a 2D diffra
tion problem in such configurations thus requires the solu
of the family$p% of diffraction problems, each one associat
with a particularap direction. For convenience, we inde
plane wave coefficients bys5(p,q)PZ2. PuttingQs5apx̂
1bqŷ, we can write thez dependence of plane wave field
ase6 igsz, where

gs5Ak22Qs
2, sPV r5$suQs

2<k2%, ~2!

gs5 iAQs
22k2, sPVe5$suQs

2.k2%. ~3!

Let us begin by restricting ourselves to conical diffraction
fields with a specifiedx dependence ofeiapx.
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Field quantities are expressed in terms of the TE and
components of the electric field with respect to the verticaz
axis. In the half space above the grating,EI

25@EI ,s
2 # and

FI
25@FI ,s

2 #, respectively, denote the TE and TM compone
of the incoming electric field, indexed by the channel nu
ber s5(p,q). Similarly, ED

15@ED,s
1 # and FD

15@FD,s
1 #, re-

spectively, denote the TE and TM components of the out
ing electric field. In the half space below the grating,EI

1 and
FI

1 denote the TE and TM components of the incoming el
tric field andED

2 andFD
2 denote the TE and TM componen

of the outgoing electric field. These TE and TM compone
are combined as block matrices according to

FD
65FED

6

FD
6G , FI

65FEI
6

FI
6G . ~4!

Where necessary, we shall indicatex dependence of the
form eiapx by a subscript@as inFI ,ap

6 ] or by parentheses@as

in S(ap)]. The scattering matrix relates the outgoing fiel
to the incident fields and, with a minor change of notatio
we show in Ref.@1# that

FF D
2

F D
1G5SFF I

2

F I
1G , ~5!

where the matrixS5S(ap) has the form

S5T21S I2
k

k'
2 D

XFKsLJ s KsLJ a

KaLJ s KaLJ aGXD T. ~6!

In Eq. ~6!, the identity matrix represents the scattering o
erator in the absence of the grating, while the second t
represents the diffracted field. A short explanation of t
various terms occurring in this equation follows; for a fu
discussion, we refer to Ref.@1#. In Eq. ~6!, k'

2 5k22ap
2 and

T is the transformation

T5FI I
I 2IG , ~7!

which reflects the symmetry relationships between elec
and magnetic quantities that are imposed by Maxwell’s eq
tions. The matricesI or I denote the identity matrix of ap
propriate size. The matrix

L5~M1S!21 ~8!

is the scattering operator in a cylindrical harmonic basis a
incorporates the lattice geometry within the Toeplitz mat
S of lattice sums@22,23# and the material properties of th
structure~refractive indices and radii! within the matrixM.
This separation of the lattice geometry and the material pr
erties of the structure is an analytically and computationa
attractive feature that is common to all Rayleigh multipo
methods. The matricesJ a andJ s reflect a change of basi
from plane waves into cylindrical harmonics, andKa and
Ks represent the inverse transformation. The indicesa ands
refer to a generalization of the symmetric and antisymme
0-2
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problems discussed in Ref.@13#. While the plane wave dif-
fraction problem is best formulated in terms of TE and T
modes, the multipole scattering problem, as developed
Ref. @1#, is best handled in terms of principal Cartesian fie
components parallel to the cylinder axes. These two re
sentations are related by the matrixX.

Equation ~6! makes no assumptions about the physi
symmetry of the scattering elements of the grating. Howe
as shown in Ref.@1#, the termsKsLJ a andKaLJ s van-
ish for gratings having an up-down symmetry, in which ca
the system decouples completely into a symmetric and
antisymmetric problem@13#.

We can also derive terms for the reflection and transm
sion scattering matrices. LetRa andRb , respectively, de-
note reflection scattering matrices for incidence above
below the grating and letTa andTb denote the correspond
ing transmission scattering matrices. Clearly the matrixS of
Eq. ~6! can be expressed in the form

S5F Ta Rb

Ra Tb
G , ~9!

so that

FF D
2

F D
1G5F Ta Rb

Ra Tb
GFF I

2

F I
1G . ~10!

A comparison between Eqs.~5! and~10! thus yields explicit
expressions for the transmission and reflection matric
When the grating is up-down symmetric, we find@1,13#

Ra5Rb52
k

2k'
2 D
X~KsLJ s2KaLJ a!X, ~11!

Ta5Tb5I2
k

2k'
2 D
X~KsLJ s1KaLJ a!X. ~12!

We now consider the family$p% of diffraction problems
associated with all possibleap directions. This is a two-
dimensional-grid environment and we compute a family
1D-grating scattering matrices each of which is associa
with a direction ap . We fill the 2D-grid matrix to get a
scattering matrixS̃ of the form

S̃5F �

S~a21! 0 0

0 S~a0! 0

0 0 S~a1!

�

G . ~13!

In Eq. ~13!, it is assumed thatS̃ acts on incident fields tha
follow the natural order

•••F I ,a21

2 ,F I ,a21

1 ,F I ,a0

2 ,F I ,a0

1 ,F I ,a1

2 ,F I ,a1

1 ,••• .

~14!
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In numerical implementations, we need to choose a m
mum number of channels that ensures accuracy. As discu
in Sec. III, this entails truncation of the matrixS̃ and permu-
tation of the remaining entries, effectively changing the in
dent field order given above. Typically, 21 cylindrical ha
monics are included in calculations, together with pla
wave orders between25 and 5 in both directions, and re
flectance and transmittance results are accurate to six fig
@1#. Absorptance results are deduced using conservatio
energy for structures with loss, while for dielectric and p
fectly conducting structures the conservation of energy
guaranteed by the structure of the formulation@24#.

III. THE WOODPILE STRUCTURE

In order to obtain reflection and transmission scatter
matrices for the woodpile structure, we first derive the sc
tering matrices for the basic unit, namely, a pair of cross
gratings. We then use a well-established algorithm@13# to
form a stack of such crossed pairs.

A. Crossed cylinder gratings

As mentioned in Sec. II, the plane wave diffracted ord
in a pair of crossed gratings are a doubly infinite set, inde
by pairs (p,q) corresponding to diffraction in the plane o
each grating. Here,q enumerates the diffracted orders of th
grating with generators parallel to thex axis, while p enu-
merates the orders of the orthogonal grating. For either g
ing, there is dispersion in only one direction and thus the
scattering matrix for a single grating is essentially a blo
diagonal matrix with each block being the scattering mat
for a 1D problem indexed over, say, channelsq, and driven
with incidence parameters corresponding to channelp of the
orthogonal grating.

As a necessary preliminary, consider an arbitrary pair
up-down symmetric planar gratings, separated by a dista
h. The incident field is@(F I

2)T(F I
1)T#T, the diffracted field

is @(F D
2)T(F D

1)T#T, and the downgoing and upgoing field
between the grating pair areF 2 andF 1, respectively~Fig
2!.

Let R̃j and T̃j , j 51,2, respectively, denote reflectio
and transmission scattering matrices for the top (j 51) and
bottom (j 52) up-down symmetric gratings. Since th
phases of the plane waves are referenced with respect to

FIG. 2. A pair of up-down symmetric gratings.
0-3
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center of each grating, an arbitrary plane wave propaga
between the gratings experiences a shift in phase
exp(igph). The propagation of a plane wave fieldF may thus
be written as PF where P5diag@P,P# and P
5diag@exp(igph)#. We have

F 25T̃1F I
21R̃1PF 1, ~15!

F 15T̃2F I
11R̃2PF2, ~16!

F D
25T̃2PF 21R̃2F I

1 , ~17!

F D
15T̃1PF 11R̃1F I

2 . ~18!

Elimination ofF2 andF1 from Eqs.~15!–~18! yields

FF D
2

F D
1G5F T̃2 0

0 T̃1
GF P̃ 0

0 P̃GF I 2R̃1P
2R̃2P I G21

3F T̃1 0

0 T̃2
G FF I

2

F I
1G1F 0 R̃2

R̃1 0
G FF I

2

F I
1G . ~19!

The matrix inversion in Eq.~19! may be performed using th
easily checked matrix identity

FI AB I G21

5F ~I2AB!21 2A~I2BA!21

2B~I2AB!21 ~I2BA!21 G .
~20!

LetRn
s andT n

s denote the reflection and transmission sc
tering matrices of the composite structure withn5a denot-
ing incidence from above andn5b denoting incidence from
below the structure. ThenRa

s , T a
s , Rb

s , andT b
s satisfy an

equation analogous to Eq.~10!. Comparison of Eqs.~10! and
~19!, together with the use of Eq.~20!, yields the results@13#

Ra
s5R̃11T̃1PR̃2P~I2R̃1PR̃2P!21T̃1 , ~21!

T a
s5T̃2P~I2R̃1PR̃2P!21T̃1 , ~22!

Rb
s5R̃21T̃2PR1P~I2R̃2PR̃1P!21T̃2 , ~23!

T b
s5T̃1P~I2R̃2PR̃1P!21T̃2 . ~24!

The basic woodpile unit is a crossed grating pair cons
ing of two layers of cylinders at right angles to each oth
We take a primary system, denoted byxyz, in which the top
grating is in thex-y plane and the cylinders in this layer a
parallel to thex axis. We introduce a secondary coordina
system, denoted byx8y8z8, with x85y, y852x, and z8
5z. In this system, cylinders in the bottom layer are para
to the x8 axis. In what follows, primed quantities for th
bottom grating are assumed to be taken with referenc
x8y8z8, while unprimed quantities for the top grating a
taken with reference toxyz.
05662
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The primary channel is (a0 ,b0 ,2g0). If the physical pa-
rameters~refractive index, diameter and position of the cy
inders! of the grating are fixed, then the matrixS̃ in Eq. ~13!
depends only onv andk i :

S̃5S̃~v,k i !. ~25!

In the xyz system, the wave vectork i has the representatio
a0x̂1b0ŷ2g0ẑ, while in thex8y8z8 system it has the rep
resentationa08x̂81b08ŷ82g08ẑ8, where

a085b0 , b0852a0 , g008 5g00. ~26!

It follows that

ap85b01
2pp

d
5bp ,

bq852a01
2qp

d
52a2q ,

gpq8 5g2q,p . ~27!

These equations allow us to obtain the scattering matrix
the bottom grating, expressed in terms ofx8y8z8. This is
done by formal replacement ofap by ap8 , bq by bq8 , and

gpq by gpq8 in expression~25! for S̃. The expressions for the
top and bottom scattering matrices assume the natural c
nel order~14! in their respective coordinate systems. Ho
ever, these orderings are physically different in that chann
(p,q) and (p,q)8 represent different plane waves in gener
From equations~27!, we see that the wave vectorap8x̂8

1bq8ŷ86gpq8 ẑ8, representing channel (p,q)8, is identical to

the wave vectora2qx̂1bpŷ6g2q,pẑ, representing channe
(2q,p), so that channels (p,q)8 and (2q,p) are physically
identical. Similarly, channels (p,q) and (q,2p)8 are identi-
cal. Consequently, if we wish to use the same channel o
in both the scattering matrices, it is necessary to appro
ately reorder the entries in one~or both! of these scattering
matrices.

For computational purposes, we order the chann
$(p,q)% by the values ofgpq

2 and then restrict ourselves to
finite subset of$gpq

2 :2`,p,q,`%, namely, those values
of gpq

2 which correspond to propagating orders (gpq
2 .0), as

well as enough evanescent orders (gpq
2 ,0) to ensure the

required convergence. We thus have a definite order of ch
nels (p1 ,q1), . . . ,(pn ,qn) and our reordering of matrix ele
ments must change the order of the entries for the top
bottom scattering matrices to ensure that this order is
input and output order for both of them.

We can use these scattering matrices and Eqs.~21!–~24!
to obtain reflection and transmission matrices for the pair
crossed gratings.

B. Grating stacks

Using a pair of crossed gratings as our basic structure,
can form a stack of such gratings, using a procedure sim
0-4
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CYLINDER GRATINGS IN CONICAL INCIDENCE WITH . . . PHYSICAL REVIEW E67, 056620 ~2003!
to that given in Ref.@13#. Equations~21!–~24! refer to phase
origins on the horizontal plane of symmetry of each grati
We shall denote reflection and transmission matrices refe
to these phase origins by a superscripted zero. In form
stacks of such pairs, it is advantageous to incorporate into
reflection and transmission matrices both the matrixP, de-
scribing the propagation between layers, and the matrixQ,
describing the horizontal shift between successive pairs. T
has the effect of encapsulating each grating pair in a s
metric layer of total thicknessh. We find @1,25#

FTa Rb

Ra Tb
G5QPF T a

(0) Rb
(0)

Ra
(0) T b

(0) GPQ, ~28!

where

Q5FQ21/2 0

0 Q1/2G , P5FP1/2 0

0 P1/2G , ~29!

Q5diag@Q,Q#, P5diag@P,P#, ~30!

Q5diag@eiQs(2sx,2sy,0)#, P5diag@eigph#, ~31!

and wheresx5sy5D/2.
Suppose a stack ofs pairs of crossed gratings is chara

terized by reflection and transmission matricesRa
s andT a

s

for incidence from above the structure and correspond
matricesRb

s andT b
s for incidence from below. To this stack

we add another pair of crossed gratings, characterized by
reflection and transmission matricesRa , Ta ,Rb , andTb .
Using a similar procedure to that described in Sec. III A,
find that the resulting structure ofs11 pairs has reflection
and transmission matrices given by

Ra
s115Ra1TbRa

s~I2RbRa
s!21Ta , ~32!

T a
s115T a

s~I2RbRa
s!21Ta , ~33!

Rb
s115Rb

s1T a
sRb~I2Ra

sRb!21T b
s , ~34!

T b
s115Tb~I2Ra

sRb!21T b
s . ~35!

IV. BAND STRUCTURE

The woodpile photonic crystal is a semi-infinite structu
with surface layers and a bulk structure. Here we concent
on the bulk structure, which may be regarded as havin
body-centered tetragonal~bct! lattice symmetry@5#, together
with a basis consisting of a pair of crossed rods. Each pa
crossed gratings gives a single planar layer of lattice poi
The primitive lattice vectors of this 2D layer area152sxex
and a252syey , where sx5sy5D/2. Stacking of pairs of
crossed gratings is done by means of the primitive transla
vectora35sxex1syey1szez , wheresz52h.

The vectorsb15pex /sx and b25pey /sy are the 2D re-
ciprocal lattice vectors corresponding to the 2D lattice v
torsa1 anda2. The Wigner-Seitz cell associated with this 2
reciprocal lattice structure is the surface Brillouin zone@11#
and has the full symmetry of a single grating layer. Defi
05662
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b352pez /sz and define a 3D reducedk zoneVr* by

Vr* 5$k5kxb11kyb21kzb3PR3%, ~36!

wherekxP@0,p/sx#, kyP@0,kx#, andkzP@0,p/sz#. It is easy
to see that this reducedk zone is completely equivalent t
the usual Brillouin zone for the structure in the sense tha
P is a point in one of these zones, then eitherP will also be
in the other zone or differ from some pointQ in the other
zone by a reciprocal lattice vector.

We remark that the woodpile may also be considered a
face-centered tetragonal~fct! lattice symmetry with lattice
vectors e152sxex , e25sxex1syey1szez, and e35sxex

2syey1szez . In the special caseD/h52A2, that issz /sx

5A2, the lattice is face-centered cubic~fcc!. However, the
bct aspect is more suited to our formulation.

Crucial to the characterization of field propagation in t
bulk of the woodpile is the elaboration of its eigenstates
Bloch modes, which form a complete basis in which to e
pand all field terms@26#. These modes are derived via plan
wave representations of the field immediately above and
low any layer@1,25#

In the nomenclature of Sec. II, we denote fields incide
from above and below a grating layer by partitioned vect
of plane wave coefficientsF I

7 and outgoing fields by parti-
tioned vectorsF D

6 @Eq. ~5!#. In this section, our basic unit is
a pair of crossed cylindrical gratings, comprising a sing
planar layer of lattice points. It is convenient to writeF 1

2

andF 2
1 , respectively, for the incoming fields above an

below the layer, where these fields are now referred to
phase origins atP1 andP2 ~Fig. 3!. The outgoing fieldsF 1

1

~above the layer! andF 2
2 ~below the layer! are expressed in

terms of the interaction of the incident fields with the ba
layer through the equations

F 1
15RaF 1

21TbF 2
1 , ~37!

F 2
25TaF 1

21RbF 2
1 . ~38!

The Bloch condition for field quasiperiodicity in the d
rectiona3 imposes the constraint

FIG. 3. Projection of the geometry of the unit cell onto they-z
plane. The crosses denote lattice points, where the middle lay
displaced into the plane of the page by a distanceD/2.
0-5
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F 2
65mF 1

6 with m5exp~2 ik0•a3!, ~39!

wherek0 denotes the Bloch vector, and, following Ref.@25#,
this constraint may be formulated as the eigenvalue prob

TFF 1
2

F 1
1G5mFF 1

2

F 1
1G , ~40!

in which

T5FTa2RbT b
21Ra RbT b

21

2T b
21Ra T b

21 G ~41!

is the interlayer translation operator.
The modes of the crystal are the eigenstates of the ma

operatorT and we must solve Eq.~40! wherem is the eigen-
value ~or Bloch factor! and the corresponding eigenstat
define the modes, which, at the interlayer boundaries,
given by plane wave expansions referred to above. W
dealing with exact, untruncated field representations, on
finite number of the modes are propagating states, that is
them umu51 ~which can only occur in lossless system!,
while an unbounded number are evanescent withumu,1 or
umu.1. In practice, the field expansions must be trunca
for computational purposes, thus leading to the solution o
finite-dimensional algebraic eigenvalue problem. It is t
propagating statesm5e2 ik0•a3 that are of greatest interes
Their importance lies in their capacity to carry energy ov
arbitrary distances within the crystal. Band gaps are cha
terized by the complete absence of propagating states,
removing the mechanism of energy transmission through
crystal. All of the states are then evanescent, which lead
fields decaying in one direction or the other. As we sh
show, this decay is given asymptotically by a power la
umu,, where, is the number of layers traversed by the mo
andm is the eigenvalue of the dominant mode.

The method outlined above involving the matrixT is
theoretically exact, but of limited practical use, due to n
merical instabilities which arise in the inversion of the tran
mission scattering matrices, necessary for the evaluatio
T. The calculation of eigenvalues and eigenvectors from
~40! thus suffers from ill conditioning that causes ca
strophic numerical errors with increasing matrix dimensio
These errors manifest themselves particularly in the cas
3D problems, such as the woodpile, for which the pla
wave orders are doubly dimensioned. These problems
be avoided by an alternative formulation~the R matrix for-
mulation!, details of which are given in Refs.@1,19#.

In Fig. 4, we show a projected band diagram of an infin
woodpile. The vertical axis is proportional to the wavenu
ber, while the horizontal axis traverses the irreducible par
the projected Brillouin zone, shown in the inset to the figu
For the woodpile, the projected Brillouin zone is a squa
and, from symmetry arguments, one need consider only
irreducible octant labeledGXM in Fig. 4. Each point on the
perimeter of the path thus determines an (a0 ,b0) pair for
which we solve the eigenvalue problem to yieldk0z . The
density of shading in the diagram is in direct proportion
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the number of propagating states for this (a0 ,b0) pair, with
the white region corresponding to the absence of any pro
gating states. Clearly evident is a range of frequencies
which there are no propagating states. This feature is a c
plete band gap, in which propagation at all such frequenc
and in all possible directions is suppressed. It is the prese
of these complete band gaps that enables the flow of ligh
be precisely controlled and guided, through the introduct
of defects into the lattice.

The effect of the number of layers

As discussed in Refs.@1,25#, the eigenvalues are divide
into forward and backward propagating states, with each
ward state paired with a backward state. For evanes
states, which carry no energy, those with eigenvalueumu,1
are regarded as forward propagating, while those withumu
.1 are regarded as backward propagating.

For states which carry energy, the treatment is more d
cate, requiring a calculation of the downgoing fluxEF .
Those states withEF.0 are regarded as forward propaga
ing, while those with EF,0 are backward propagatin
@1,25#.

With all modes partitioned as above, we recast Eq.~40! in
the form

TF̃5F̃L̃, ~42!

where

F̃5FF2F28

F1F18
G and L̃5FL 0

0 L8
G . ~43!

The left and right partitions of the block structured matrixF̃
and the diagonal matricesL5diag@m i # and L85diag@m i8#

that constitute the left and right partitions ofL̃ correspond,
respectively, to the forward and backward propagation pr
lems. Hereum i u<1 andum i8u>1.

FIG. 4. ~Color online! Two-dimensional projection of the ban
structure of an infinite dielectric woodpile crystal. The cylindric
rods have radii of 0.1mm and refractive index 3.6, the pitchD is
0.711mm, and the separationh between layers is 0.21mm.
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Now consider a 2, layer structure consisting of, crossed
pairs of gratings. At thenth pair (0<n<,) the field may be
written as a linear combination of eigenstates:

FF 2

F 1G5FF2F28

F1F18
G FLn 0

0 ~L8!2(,2n)GFC2

C1
G , ~44!

for constant vectorsC2 and C1 . We denote the inciden
field from above byd, the reflected field at the surface byr , ,
and the transmitted field at the bottom of the structure byt, .

Then, puttingn50 in Eq. ~44!, we have

F d

r ,
G5FF2

F1
GC21FF28

F18
G ~L8!2,C1 . ~45!

Similarly, puttingn5, in Eq. ~44! yields

F t,

0G5FF2

F1
GLnC21FF28

F18
GC1 , ~46!

assuming that there is no incident field from below the str
ture. After some matrix manipulation, we find that

r ,5@R2~P8!,RP ,#@I2R8~P8!,RP ,#21d,
~47!

t,5~I2R8R!P ,@I2R8~P8!,RP ,#21d, ~48!

where

R5F1F2
21, P5F2LF2

21, ~49!

R85F28 ~F18 !21, P85F18 ~L8!21~F8!1
21 . ~50!

In a band gap, (P8),→0 as,→`, so

t,5~F22R28 F1!L,~F2
21d !, ~51!

which shows explicitly that the asymptotic behavior of t
transmittance with increasing, is governed by its dominan
eigenvalue and that the field intensity decays asumu2, within
a band gap.

For a semi-infinite structure with each layer having
arbitrarily small amount of loss, we havet`50, while for all
structures, whether lossy or not@24#,

r`5F1F2
21d 5R`d, ~52!

where R`5F1F2
21 is the scattering matrix for an infinite

woodpile.

V. METALLIC GRATINGS

Recently, metallic photonic crystals have been fabrica
at Sandia Laboratories@9#. However, investigation of thei
photonic band gap properties, especially in the infrared
visible spectrum can be challenging because metals
strongly dispersive and absorbing in these regions. A str
advantage of the multipole theory we have developed is
it is able to accommodate metallic gratings without difficul
05662
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d
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This is because our input parameters are all frequency
pendent, so in order to model phenomena over a rang
frequencies, we need only loop over all frequencies, wh
changing the input data~such as complex refractive index!
for each new frequency. We have modeled grids compo
of tungsten, for which the frequency-dependent refractive
dex is taken from Palik@21#. This enters into our formulation
via the matrixM, introduced in Sec. II.

The photonic crystals that have been fabricated at Sa
Laboratories@9# are tungsten woodpile structures consisti
of rectangular rods, with a filling fraction of 28%. In Re
@9#, comparisons were made between experiment and th
for unpolarized incident radiation and some differences w
evident. For comparison purposes, we have modeled a s
ture consisting of circular rods also with a filling fraction o
28% ~Fig. 5!. As distinct from the results in Ref.@9#, we
show results for normally incident radiation for both pola
izations of the incident beam. This is of interest since
surface structure of the woodpile is not polarization insen
tive, even though its bulk structure is. One interesting feat
of Fig. 5 is that the reflectance, transmittance, and abs
tance of the four layer woodpile agree well for both pola
izations for wavelengths longer than the grid period. At ve
long wavelengths, that for theH i case where the magneti
field is oriented parallel to the rods in the top layer, there i
lower reflectance than the orthogonalEi polarization. This is
easily understood on the basis of average dielectric cons
for H i we average the inverse dielectric constant@27#, giving
a lower result than forEi polarization, where the norma

FIG. 5. ~Color online! Four layer woodpile, showing absorp
tance, reflectance, and transmittance~thick, thin, and dashed curves
respectively! as a function of wavelengthl. The incidence is ver-
tical, with the electric field perpendicular to the top layer of ro
~above! and parallel to it~below!. The rod diameters are 1.6mm,
the pitch is 4.2mm, and the center-to-center layer spacing
1.7 mm. The arrows show the Rayleigh wavelengths.
0-7
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average of dielectric constant is calculated. For both the
larizations, there is a narrow plasmon absorption peak n
7 mm, causing a drop in reflectance there. A second, m
pronounced drop in reflectance occurs at the first Rayle
wavelength of the woodpilel5D. At shorter wavelengths
there are significant differences in the reflectance, trans
tance, and absorptance for the two polarizations. TheH i
curve exhibits a more ragged variation of reflectance w
wavelength, in keeping with previous work on diffractio
anomalies in metallic inductive grids@28#.

The difference between surface effects and bulk effect
made more evident in Fig. 6, where we show reflectan
transmittance, and absorptance for 40 layer woodpiles. N
that the transmittance is now only appreciable in a narr

FIG. 6. ~Color online! As Fig. 5, but for 40 layers.

FIG. 7. Semi-infinite tungsten woodpile, showing reflectance
a function of wavelengthl (mm) for vertical incidence. The solid
curve is the case where the incident electric field vector is ortho
nal to the top layer of rods, while the dashed curve is the case w
the incident electric field vector is parallel to the top layer of ro
The solid line at the top of the graph is the reflectance of b
tungsten. The rod diameters are 1.2mm, the pitch is 4.2mm, and
the center-to-center layer spacing is 1.3mm.
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band on the long wavelength side of the first Rayleigh wa
length. Even this region of enhanced transmittance must
appear with the addition of more layers, as a consequenc
the lossy nature of each layer of the woodpile. The polari
tion differences for wavelengths below the first Woo
anomaly are similar in character for forty layers to the fo
layer case.

Figure 7 also shows the effect of polarization of the in
dent beam for a different cylinder radius from Figs. 5 and
and also for semi-infinite stacks. For this case, the wood

s

o-
re
.
k

FIG. 8. Semi-infinite tungsten woodpile as in Fig. 7 compar
with a perfect conductor of the same physical dimensions, show
reflectance as a function of wavelengthl (mm) for vertical inci-
dence with the incident electric vector perpendicular to the top la
of rods ~above! and parallel to it~below!.

FIG. 9. ~Color online! Tungsten woodpile, showing logarithm o
transmittance for 20, 30, 40, 50 layers. The plotted dot points sh
spacings of 20 lnumu determined by the dominant eigenvaluem,
whereumu50.534 549 whenl53.5 andumu50.098 242 1 whenl
515. The rod diameters are 1.2mm, the pitch is 4.2mm, and the
center-to-center layer spacing is 1.3mm. The incidence is trans
verse magnetic and conical with wave vector in the direction of

unit vectorû50.358x̂10.268ŷ10.894ẑ.
0-8
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transmittance is zero, the reflectance is calculated from
~52!, and the absorptance is the complement of the refl
tance. Note that the plasmon absorption peaks near 7mm
differ substantially for the two polarizations, demonstrati
conclusively that they manifest surface rather than bulk p
mon effects. The fact that the plasmon absorption peak
H i polarization is wider and deeper than that forEi , again is
in keeping with theoretical and experimental studies on m
tallic crossed gratings@28,29#.

In Fig. 8 we compare tungsten woodpiles and woodp
made of perfectly conducting cylinders. The perfect cond
tivity case is treated by modifying the boundary conditio
that occur in the matrixM of Eq. ~8!, a further illustration
of the versatility of the multipole method. The polarizatio
effects for the perfect conductor are similar to those for tu
sten. A notable feature in Fig. 8 is the difference in the wid
of the reflection dip near 7mm for the two polarizations.
Note that for both the polarizations the reflectance drop
curs well on the long wavelength side of the first Raylei
wavelength, even for the infinite conductance case. As
the latter, one would expect the surface plasmon resona
for a structure with shallow modulation to coincide with th
Rayleigh wavelength, this illustrates the dominant role of
woodpile geometry in determining the position of the dip

As we showed in Sec. IV, the asymptotic behavior of t
transmittance with increasing, is governed by its dominan
eigenvalue and that the field intensity decays asumu2, within
a band gap. This is clearly shown in Fig. 9, where ea
additional group of 10 layers causes the transmission to d
by a factor determined by the dominant eigenvalue. On
other hand, if a particular Bloch mode has a large coefficie
the initial attenuation is dominated by this mode. Only af

FIG. 10. ~Color online! Tungsten woodpile, showing logarithm
of transmittance for 10, 20, 30, 40, 50 layers as a function of wa
lengthl (mm). The rod diameters are 1.2mm, the pitch is 4.2mm,
and the center-to-center layer spacing is 1.3mm. The incidence is
vertical, with the electric field orthogonal to the top layer of rod
The nonuniform decrease in transmittance at 5mm for each addi-
tional set of 10 layers is evident~See the text for further discus
sion!.
A.

05662
q.
c-

s-
or

-

s
-

-

-

r
ce

e

h
p
e
t,
r

sufficiently many layers have been added will the asympto
attenuation become apparent. This behavior is shown in F
10 and 11.

VI. CONCLUSION

In this paper, we have given a theoretical account of
woodpile photonic crystal, including the derivation of e
plicit analytic expressions for the reflectance, transmittan
and absorptance of a structure with either a finite or an i
nite number of layers. In the case of a finite structure,
have shown how the transmittance, reflectance, and abs
tance for a given number of layers depends on the eigen
ues and Bloch coefficients of the layer transfer matrixT of
Eq. ~41!. Our treatment enables us to analyze both dielec
and metallic woodpiles, including the case of perfect cond
tivity, where in the metallic case we are able to use measu
values of optical constants.

Our theory enables us to generate numerical results s
as band diagrams of dielectric woodpiles and graphs of
flectance, transmittance, and absorptance of both diele
and metallic woodpiles. Numerical studies have dem
strated polarization dependence for metallic woodpil
showing that the surface layer of a woodpile crystal plays
important role in the observed effect, and emphasizing
importance of studying the polarization dependence of
optical properties of woodpiles, even for normally incide
radiation.
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FIG. 11. ~Color online! The tungsten woodpile of Fig. 10, show
ing logarithm of transmittance as a function of increasing la
number at a wavelength of 5mm. The initial decay represents
Bloch mode with eigenvalue of absolute value 0.695 544 and Bl
coefficient 3.215 19, while the asymptotic decay is due to the Bl
mode with the dominant eigenvalue having absolute va
0.957 053, but with the small coefficient of 0.095 947 8.
.
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